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Abstract

A new, conservative semi-Lagrangian formulation is proposed for the discretization of the scalar advection equation in
flux form. The approach combines the accuracy and conservation properties of the Discontinuous Galerkin (DG) method
with the computational efficiency and robustness of Semi-Lagrangian (SL) techniques. Unconditional stability in the von
Neumann sense is proved for the proposed discretization in the one-dimensional case. A monotonization technique is then
introduced, based on the Flux Corrected Transport approach. This yields a multi-dimensional monotonic scheme for the
piecewise constant component of the computed solution that is characterized by a smaller amount of numerical diffusion
than standard DG methods. The accuracy and stability of the method are further demonstrated by two-dimensional tracer
advection tests in the case of incompressible flows. The comparison with results obtained by standard SL and DG methods
highlights several advantages of the new technique.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The development of accurate and conservative numerical methods to solve efficiently the linear advection
equation
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has always been a main goal of the research on advection dominated flows. In this context, the semi-Lagrang-
ian (SL) method is widely acknowledged as an accurate and efficient option [13,35,45]. In SL methods, Eq. (1)
is reformulated in Lagrangian form
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dt
¼ oc

ot
þ u � rc ¼ �cdivu; ð2Þ
and time discretization exploits the fact that the solution values are available along the characteristic lines,
which are approximated numerically [44]. The original formulation of SL methods, however, is inherently
nonconservative, so that, in order to achieve local mass conservation, two main approaches are typically
pursued.

In the first strategy, based on conservative remapping [24], Eq. (2) is formally integrated over a control vol-
ume that is moving with the flow, and then discretized by approximate reconstruction of the upstream control
volume (see [26,32,33,38,50] for examples of mass conserving variants of the SL method based on remapping).
In the second strategy, more similar in spirit to Eulerian finite volume methods, Eq. (1) is first integrated in
space over a fixed mesh control volume. It is then integrated in time over a time step Dt, and finally it is dis-
cretized by approximate reconstruction of the flux through the control volume boundary over Dt. The result-
ing methods can be referred to as flux form SL schemes (see e.g. [12,15–19,28,30,31]; see also [35], for a
description and stability analysis of these approaches as generalized Godunov methods). Flux form SL
schemes can also be interpreted as a natural generalization of wave propagation methods, see, e.g., [29].

The purpose of the present work is to introduce a flux form SL discretization for (1) that employs a
Discontinuous Galerkin (DG) formulation [8,10] to reconstruct the numerical solution within each control
volume. Throughout the paper, the novel technique is referred to as semi-Lagrangian Discontinuous Galerkin
(SLDG) approach. The properties of the proposed method are analyzed here assuming the advective flow u in
(1) to be incompressible. One possible approach to include diffusive terms in the mathematical model is also
discussed in the present work, although a full understanding of the optimal way to treat diffusion in conjunc-
tion with SLDG requires further study. Another issue that is currently being investigated concerns the
coupling of the SLDG formulation with other discretizations of compressible fluid flow equations.

The SLDG method aims at combining the accuracy and conservation property of the DG method with the
computational efficiency and robustness of SL techniques. On one hand, the use of SL backward trajectories
allows to achieve unconditional stability, irrespective of the value of the Courant number, thus overcoming the
severe stability restrictions enforced by the DG formulation. On the other hand, the potential loss of accuracy
of standard SL methods at low Courant numbers pointed out in [14] does not affect the SLDG scheme, as
demonstrated by a number of numerical experiments. Furthermore, in the case of large systems of advec-
tion–diffusion–reaction equations, as typical of environmental modelling applications [25,48], the extra effort
needed to compute the trajectories is required only once for the whole system, so that the potential overhead
associated with this effort becomes negligible, as demonstrated in [31]. Finally, the proposed method is char-
acterized by a computational stencil that is similar to those of standard Eulerian DG formulation. This means
that high order approximations can be constructed locally, without involving a large number of neighbouring
elements, thus making domain decomposition-based parallelization approaches more straightforward. As it
will be clear from the description of the numerical method, the use of an elementwise variable-degree formu-
lation is also possible, leaving unaltered the global and local mass conservation properties of the scheme. This
feature of the formulation will be exploited in a future improved implementation of the scheme to reduce com-
putational costs.

A brief outline of the article is as follows. The SLDG method is described in Section 2. A von Neumann
stability analysis for the constant coefficient, one-dimensional case is then carried out in Section 3, showing
that the method is stable for arbitrary values of the Courant number. Since the SLDG is not inherently mono-
tonic in its higher order version, a monotonization approach based on the Flux Corrected Transport (FCT)
technique is introduced and discussed in Section 4, while in Section 5 the interesting properties of the new
method are demonstrated by a number of numerical tests relevant in advection dominated flows. Future devel-
opments and possible applications are finally discussed in Section 6.
2. The semi-Lagrangian discontinuous Galerkin method

In this section we describe in detail the Semi-Lagrangian Discontinuous Galerkin (SLDG) method. In
doing this, we combine the unified framework for generalized Godunov methods proposed in [35] with the
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Discontinuous Galerkin finite element formulation introduced and analyzed in [8,10] in the case of nonlinear
hyperbolic problems.

2.1. Preliminaries

Let X be an open bounded domain of R2, with boundary oX ” C and outward unit normal vector nC, where
a solution of (1) is to be approximated, and let Th denote a partition of X into Nel triangular elements K. This
latter choice allows an easy generation of approximation basis functions of arbitrary polynomial order and
provides a great flexibility to the geometrical discretization of the computational domain. The application
of the scheme to include quadrilateral elements and to treat three-dimensional problems can be carried out
along the same lines as in [21,22].

The area of an element K is denoted by jKj, while its boundary and outward unit normal vector are oK and
noK, respectively. The diameter of K is hK and h ¼ maxK2Th hK . The set of all the edges of K is EK , while Eh is
the set of the Nedges edges of the triangulation, jej denoting the length of a generic edge e 2 Eh. For each inter-
nal edge e 2 Eh, a normal unit vector ne is arbitrarily fixed, and K1

e , K2
e denote the two elements of Th sharing

the edge e and such that ne is directed from K1
e to K2

e . If e 2 C, then ne ” nC and K1
e is the element of Th having e

as a boundary edge. Consistently, let rK1
e ;e
¼ 1 and rK2

e ;e
¼ �1, in such a way that rKi

e;e
ne is the outer normal

unit vector associated with edge e of element Ki
e for i = 1, 2.

Let k be a nonnegative integer. Then V hðKÞ ¼ PkðKÞ denotes the space of polynomials of degree at most k

on element K, with Nk � dimðV hðKÞÞ ¼ 1
2
ðk þ 1Þðk þ 2Þ. The space of elements of L1(X) whose restriction to

K 2Th belongs to Vh(K) is denoted by Vh. Notice that functions in Vh are in general discontinuous across
each edge e 2 Eh.

Eq. (1) is to be approximated in X supplied with inflow boundary conditions and under the assumption that
the given velocity vector field u is solenoidal, i.e., divu = 0 in (2). In view of the numerical approximation of
Eq. (1), we need to introduce the projection of u over the finite element space of Raviart–Thomas of lowest
degree [40]. With a slight abuse of notation, we indicate throughout the article this projection by the symbol
u. The numerical importance of using this projected field relies on the fact that (i) it allows an automatic flux
conservation across interelement boundaries and (ii) it is easy to check that u is piecewise constant on each
K 2Th. The construction of u only requires for each edge e 2 Eh the constant quantity ue, that is the normal
velocity component in the direction of ne. Then, for each time interval [tn, tn+1], with Dt = tn+1 � tn, the normal
components of the velocity field to the edges of Th are assumed to be given at the intermediate time level tnþ1

2

and are denoted by u
nþ1

2
e , e = 1, . . . , Nedges, so that the (discrete) divergence free constraint amounts to requir-

ing that
X
e2EK

rK;eunþ1
2

e jej ¼ 0 8K 2Th. ð3Þ
The time dependence of u and ue will often be omitted in the following for the sake of simplicity. We notice
that assuming that u can be completely determined by its normal fluxes eases the future coupling of the pro-
posed scheme to mass conservative methods for environmental flows, such as those proposed in [4–6,34].
Moreover, assuming a velocity field piecewise constant in time, although limiting a priori the formal accuracy
of the method, corresponds to what is actually computationally feasible when coupling tracer advection to
most semi-Lagrangian models for fluid flow.

2.2. Spatial discretization

The spatial discretization of (1) is carried out initially along the usual lines of Discontinuous Galerkin (DG)
methods (see e.g. [8]). An approximation ch = ch(x, t) to the solution c(x, t) of (1) is sought, such that ch 2 Vh

at each time level. Multiplying Eq. (1) by a function vh 2 Vh, integrating over K 2Th and replacing the exact
solution c by its approximation ch, we get
d
Z

chðx; tÞvhðxÞdx ¼ �
Z

divðuðx; tÞchðx; tÞÞvhðxÞdx 8vh 2 V h.

dt K K
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Then, formally integrating by parts, we obtain
d

dt

Z
K

chðx; tÞvhðxÞdx ¼
Z

K
chðx; tÞuðx; tÞ � rvhðxÞdx�

Z
oK

chðn; tÞuðn; tÞ � noKvhðnÞdn 8vh 2 V h. ð4Þ
Notice that the advective boundary term ch(n, t)u Æ noK in (4) does not yet have a precise meaning, because ch is
a discontinuous function across interelement boundaries. Eq. (4) is the starting point for time discretization
with Runge–Kutta schemes in standard DG formulations [8,10]. In our approach, we depart from this latter
procedure and follow the path of generalized Godunov methods as presented and analyzed in [35]. With this
aim, we integrate (4) in time between tn and tn+1, to obtain the following weak form of the linear advection
equation:
Z

K
chðx; tnþ1ÞvhðxÞdx ¼

Z
K

chðx; tnÞvhðxÞdxþ
Z tnþ1

tn
ds
Z

K
chðx; sÞuðx; sÞ � rvhðxÞdx

�
Z tnþ1

tn
ds
Z

oK
chðn; sÞuðn; sÞ � noKvhðnÞdn 8vh 2 V h. ð5Þ
For each element K 2Th, the discrete degrees of freedom associated with the numerical solution at a given
time level tn are denoted by fcn

j;Kgj2Jk
, with Jk ¼ f0; . . . ;Nk � 1g, so that an approximate numerical solution

can be reconstructed locally for all K 2Th as
chðx; tnÞjK ¼
X
j2Jk

cn
j;K/j;KðxÞ. ð6Þ
In the following, the functions /j,K(x) are taken to be an orthogonal basis for PkðKÞ such that
�K/i,K(x)/j,K(x)dx = jKjdij (and, in particular, /0;KðxÞ ¼ 1KðxÞ, 1K being the characteristic function associated
with element K, and �K/j,K(x)dx = 0 for j > 0). For brevity, we set henceforth cn

hðxÞ ¼ chðx; tnÞ.
2.3. Time discretization

The next step is to derive from (5) a full space–time discretization. In order to describe the time evolution of
ch(x, t), we define, as in [35], the exact evolution operator
Eðt; sÞ : cðx; tÞ ! ½Eðt; sÞcð�; tÞ�ðxÞ ¼ cðx; t þ sÞ. ð7Þ

E(t, s) can be interpreted as a representation of the solution of the linear advection equation in nonconservative

form (2). More precisely, under mild regularity assumptions on the velocity field (see [39]), it can be proven
that streamline or characteristic line functions exist, which are defined as the solutions of the ordinary differ-
ential equations
d

ds
X ðx; t; t þ sÞ ¼ uðX ðx; t; t þ sÞ; t þ sÞ ð8Þ
with initial datum at time t given by X(x, t ; t) = x. For smooth and solenoidal given velocity u, by the chain
rule it is then possible to prove that for any t and s the following relation holds:
cðx; t þ sÞ ¼ ½Eðt; sÞcð�; tÞ�ðxÞ ¼ cðX ðx; t þ s; tÞ; tÞ. ð9Þ

A discrete approximation of this evolution operator representing the time evolution from a time level tn to
tn + s is denoted by En

s . Providing a discrete approximation bX ðx; t; t þ sÞ for the solution of (8), with s 2 [0, Dt],
completely determines the operator En

s as
En
s cn

h

� �
ðxÞ ¼ cn

hðbX ðx; tn þ s; tnÞÞ. ð10Þ
Function bX can be interpreted as the numerical approximation of the streamlines usually performed in semi-
Lagrangian methods. Following the ideas proposed in [28,30], we can now use (9) and (10) to evaluate the
right hand side of (5), so that the SLDG method can be defined for each element K 2Th by
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jKjcnþ1
j;K ¼ jKjcn

j;K þ
Z Dt

0

ds
Z

K
En

s cn
h

� �
ðxÞu x; tnþ1

2

� �
� r/j;KðxÞdx

�
Z Dt

0

ds
X
e2EK

Z
e

En
s cn

h

� �
ðnÞunþ1

2
e /j;KðnÞdn 8j 2 Jk. ð11Þ
For ease of notation, the time dependency of the velocity field will be omitted in the remainder of the article.

2.4. The fully discrete SLDG approximation

In order to obtain a fully discrete method, the integrals in space and time in (11) must be replaced by appro-
priate quadrature rules. In the present implementation of the proposed method, Gaussian quadrature rules are
used for the integration in space. Gaussian points fxvgLe

v¼1, fyvg
Lf

v¼1, are introduced on the edges and the ele-
ments, respectively. The corresponding Gaussian weights are denoted by f~xvgLe

v¼1, f~~xvg
Lf

v¼1. For the integration
in time, a simple composite rule is applied in the present implementation. For each element K and for each
edge e, we define intermediate time levels fsK

mg
MðKÞ
m¼0 , fse

mg
MðeÞ
m¼0 . For convenience, the dependency on the edge

and element is often dropped and should be recovered from the context. The intermediate time levels are such
that s0 = 0, sM = Dt and Dsm = sm � sm�1. Formally, we make the approximation
Z Dt

0

En
s ds �

XM�1

m¼0

En
s

mþ1
2

Dsm; ð12Þ
where now smþ1
2
¼ sm þ Dsm

2
. More accurate composite integration rules can of course be used along the same

lines. The numerical trajectories bX ðx; tn þ s; tnÞ necessary for the complete definition of En
s are computed by

a simple backward Euler method with time substeps given by the quantities Dsm. Given these definitions,
the fully discrete SLDG approximation of Eq. (1) can then be defined for each K 2Th as
jKjcnþ1
j;K ¼ jKjcn

j;K þ
XM�1

m¼0

XLf

v¼1

En
s

mþ1
2

cn
h

� �
ðyvÞuðyvÞ � r/j;KðyvÞDsm

~~xv

�
X
e2EK

rK;euejej
XM�1

m¼0

XLe

v¼1

En
s

mþ1
2

cn
h

� �
ðxvÞ/j;KðxvÞDsm ~xv 8j 2 Jk. ð13Þ
It must be remarked that the approximation (12) of the evolution operator eliminates the ambiguity in the
definition of the numerical fluxes along interelement boundaries, since in all cases with nonzero advecting
velocity the quantity ½En

s
mþ1

2

cn
h�ðxvÞ is uniquely defined for m = 0, . . . , M � 1. In the special case where piecewise

constant finite elements are considered, the following finite volume method is recovered from (13):
jKjcnþ1
0;K ¼ jKjcn

0;K �
X
e2EK

rK;euejej
XM�1

m¼0

XLe

v¼1

En
s

mþ1
2

cn
h

� �
ðxvÞDsm ~xv; ð14Þ
where the quantity cn
0;K is the discrete degree of freedom representing the average of the concentration over

element K 2Th and cn
h is a piecewise constant function over Th.

3. Linear stability analysis in the one-dimensional case

In this section, we carry out along the lines of [7] the stability analysis of the SLDG scheme in the von Neu-
mann sense. The proof will be given only for the case of linear polynomial approximations P1. With this aim,
let us consider Eq. (1) in the one-dimensional case with constant advection velocity
ct þ ucx ¼ 0 in ½0; L� � ½0; T �;
cðx; 0Þ ¼ c0ðxÞ x 2 ½0; L�;

�
ð15Þ
and supplied with periodic initial and boundary conditions. Let Th be a uniform partition of [0, L] into
elements Kj = (xj�1/2, xj+1/2) of size h, and Dt denote the time step. Moreover, for each Kj 2Th, let xj be
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the midpoint of Kj. The key stability parameter is the Courant number C ¼ uDt
h , which can be split into its integer

and fractional part as C = m + c, with m 2 N and c 2 [0, 1), as customary in the analysis of semi-Lagrangian
schemes (see e.g. [2]). Introducing the cell characteristic time s ¼ h

u we have also Dt = (m + c)s. Denoting now by
aj and bj the degrees of freedom of ch with respect to the P1 hierarchical basis, we have
cn
hðxÞ

		
Kj
¼ an

j þ 6bn
j ðx� xjÞ=ð

ffiffiffi
3
p

hÞ 8Kj 2Th.
The SLDG formulation (13) for the evolution of ch from time level tn to tn+1 can then be expressed as a func-
tion of aj and bj as
anþ1
j ¼ an

j�m� c an
j�m�an

j�m�1

� �
�

ffiffiffi
3
p

cð1� cÞ bn
j�m�bn

j�m�1

� �
;

bnþ1
j ¼ bn

j�mþ
ffiffiffi
3
p

cð1� cÞ an
j�m�an

j�m�1

� �
�3cð1� cÞ bn

j�mþbn
j�m�1

� �
�2c2 3

2
� c

� �
bn

j�m�bn
j�m�1

� �
.

ð16Þ
Proposition 3.1. The SLDG method (16) is unconditionally L2-stable.

Proof. We have
cn
h

 2

L2ð0;LÞ ¼ h
X

j

an
j

� �2

þ bn
j

� �2
� �

. ð17Þ
We can associate with ch
n the piecewise constant vector function ½an

hðxÞ; b
n
hðxÞ�

T with an
hðxÞ ¼

P
ja

n
j 1KjðxÞ and

bn
hðxÞ ¼

P
jb

n
j 1KjðxÞ, so that (17) can be rewritten as
cn
h

 2

L2ð0;LÞ ¼ an
h

 2

L2ð0;LÞ þ bn
h

 2

L2ð0;LÞ. ð18Þ
Let us consider the Fourier series an
hðxÞ ¼

P
k2ZAn

keI2kp
L x and bn

hðxÞ ¼
P

k2ZBn
keI2kp

L x associated with an
h and bn

h,
where I ¼

ffiffiffiffiffiffiffi
�1
p

. Applying the Bessel–Parseval equality to (18) yields
cn
h

 2

L2ð0;LÞ ¼ L
X
k2Z
ð An

k

		 		2 þ Bn
k

		 		2Þ. ð19Þ
The coefficients Anþ1
k , Bnþ1

k of the SLDG method can be expressed as linear combinations of An
k , Bn

k as follows:
Anþ1
k ;Bnþ1

k

� �T ¼ e�IhmGðh; cÞ An
k ;B

n
k

� �T
; ð20Þ
where h ¼ 2kph
L and G is the skew-symmetric amplification matrix with entries
G11ðh; cÞ ¼ 1� cð1� e�IhÞ; G12ðh; cÞ ¼ �
ffiffiffi
3
p

cð1� cÞð1� e�IhÞ;
G22ðh; cÞ ¼ 1� 3cð1� cÞð1þ e�IhÞ � c2ð3� 2cÞð1� e�IhÞ.
Let k1,2 denote the eigenvalues of G, with jk2j 6 jk1j. It can be checked that k1 6¼ k2 for all h 2 [�p, p], and that
for h! 0,
jk1j ¼ 1� 1

72
cð1� cÞð1� cþ c2Þh4 þ Oðh6Þ;
so that, "h 2 [�p, p] we have jk1j < 1 for jcj 6 1, as can be seen from the plots of k1, k2 in Fig. 1. As a con-
sequence, the following inequality holds:
cnþ1
h

 2

L2ð0;LÞ < cn
h

 2

L2ð0;LÞ
which proves the unconditional stability of the SLDG method in the von Neumann sense. h

We notice that the stability result proved in this section is analogous to what is usually obtained for stan-
dard SL methods (see e.g. [2,14]), and it provides an improvement of the stability analysis carried out in [9],
which yields the stability constraint c < 1

3
for the DG method using linear finite elements.



Fig. 1. Plot of k1 (solid line) and k2 (dashed line) for c = 0.05, 0.2, 0.4 (left) and c = 0.6, 0.8, 0.9 (right). Dash–dot line: unit circle.
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4. Monotonicity

In this section, we provide a technique to make the SLDG discretization (13) a monotonic method. In order
to achieve this important property, we first show in Section 4.2 that the piecewise constant part of the approx-
imate solution satisfies a discrete maximum principle, that is
min
K2Th

cn
0;K 6 cnþ1

0;K 6 max
K2Th

cn
0;K 8K 2Th. ð21Þ
Then, we apply to the SLDG formulation the well known Flux Corrected Transport (FCT) technique [49] to
enforce monotonicity of the higher order approximate solution. It is important to notice that, as in the context
of DG methods for scalar conservation laws, the proof of a discrete maximum principle is divided into two
steps [8]. In the first step, a discrete maximum principle is proved for the degrees of freedom representing
the average of the solution over each element K (i.e., in our case, the values cnþ1

0;K ). Then, a discrete maximum
principle is established for the DG method using higher order elements by limiting the slopes of the numerical
solution, represented by the degrees of freedom cn

j;K , with j = 1, . . . , Nk � 1, in (6). In the present approach,
instead, we enforce monotonicity by a suitable correction of the edge flux contributions in (11) using the
FCT approach, as explained in Section 4.3.

4.1. Definition of edge fluxes

In this preliminary section, we introduce edge fluxes into the SLDG formulation (13). For each edge e 2 oK,
we define the approximate flux associated with the jth degree of freedom as
F j
e ¼ uejej

XM�1

m¼0

XLe

v¼1

En
s

mþ1
2

cn
h;j

� �
ðxvÞDsm ~xv 8j 2 Jk;
where cn
h;jðxÞ ¼

P
K2Th

cn
j;K/j;KðxÞ represents the jth component of cn

hðxÞ. Using the above definition, the update
(14) for the mean value of ch can be written in the following equivalent form:
cnþ1
0;K ¼ cn

0;K �
X
e2EK

rK;euejej
jKj

XM�1

m¼0

XLe

v¼1

En
s

mþ1
2

cn
h

� �
ðxvÞDsm ~xv ¼ cn

0;K �
X
e2EK

rK;e

jKj F 0
e �

XNk�1

j¼1

X
e2EK

rK;e

jKj F j
e. ð22Þ
It is now convenient to redefine F 0
e as
F 0
e ¼

Z Dt

0

ds
Z

e
En

s cn
h;0

h i
ðnÞdn ¼

Z
e

dn
Z Dt

0

En
s cn

h;0

h i
ðnÞds. ð23Þ
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Due to (10), one has
Z Dt

0

En
s cn

h;0

h i
ðnÞds ¼

Z Dt

0

cn
h;0ðbX ðn; tn þ s; tnÞÞds.
It must be remarked that, since the time dependency of the velocity field is assumed to be frozen during each
time step, the set of points bX ðn; tn þ s; tnÞ, s 2 [0, Dt], coincides with those spanned by the backward trajectorybX ðn; tnþ1; tnþ1 � sÞ, s 2 [0, Dt]. Noting that cn

h;0 is piecewise constant over Th, the previous relation can be writ-
ten as
Z Dt

0

cn
h;0ðbX ðn; tn þ s; tnÞÞds ¼

X
K 0

cn
0;K 0Dsn

K 0 ;
where Dsn
K 0 denotes the amount of time during which bX ðn; tnþ1; tnþ1 � sÞ 2 K 0 and the sum is extended over all

elements crossed by bX ðn; tnþ1; tnþ1 � sÞ. As a result,
P

K 0Dsn
K 0 ¼ Dt independently of n and
F 0
e ¼ uejejDt

X
K 02Te

aK 0 ;ec
n
0;K 0 ; ð24Þ
where we set
aK 0;e ¼
1

jejDt

Z
e

Dsn
K 0 dn ð25Þ
and where Te is the set of all elements crossed by bX ðn; tnþ1; tnþ1 � sÞ for any n 2 e. Noting that for each edge
e 2 EK we have
X

K 0

Z
e

Dsn
K 0 dn ¼ jejDt;
from definition (25) it turns out that aK 0 ;e P 0 and
X
K 02Te

aK 0;e ¼ 1. ð26Þ
Furthermore, in the case of a velocity field defined as in Section 2.1 and satisfying exactly the discrete diver-
gence free constraint (3), the quantities Dsn

K 0 and aK 0;e can be computed exactly.

4.2. Monotonicity of ch,0

In this section, we carry out the first step of the monotonicity proof by showing that the mean value of ch,
defined as
cnþ1
0;K ¼ cn

0;K �
X
e2EK

rK;e

jKj F 0
e ; ð27Þ
satisfies the discrete maximum principle.

Proposition 4.1. The quantity cnþ1
0;K satisfies the discrete maximum principle (21).

Proof. Let us show that the update cnþ1
0;K can be expressed as a linear combination of cn

0;K 0 with nonnegative
coefficients. With this aim, we introduce the following sets:
EþK ¼ fe 2 EK : rK;eue P 0g; E�K ¼ fe 2 EK : rK;eue < 0g;

which represent the outflow and inflow boundaries of K, respectively. We also introduce the two following
subsets of Te
Tþ
K ¼

[
e2EþK

Te; T�
K ¼

[
e2E�K

Te.
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Clearly, EK ¼ EþK [ E�K , which can be used to reformulate (27) as
cnþ1
0;K ¼ cn

0;K �
X

K 02TþK

X
e2EþK

juejjejDt
jKj aK 0 ;ec

n
0;K 0 þ

X
K 02T�K

X
e2E�K

juejjejDt
jKj aK 0 ;ec

n
0;K 0 . ð28Þ
For simplicity, we make now the assumption that K 62T�
K , which excludes the case of very high Courant num-

bers or flows with very strong deformation (i.e., high Lipschitz numbers according to the definition in [44]). The
proof can be extended to cover also these cases, but it is far simpler under the above assumption. In any case,
irrespective of this restriction, one has Tþ

K ¼ fKg [ ðTþ
K \T�

K Þ. Relation (28) can then be rewritten as
cnþ1
0;K ¼ an

Kcn
0;K þ

X
K 02ðT�K\T

þ
K Þ

bn
K 0c

n
0;K 0 þ

X
K 02ðT�K nT

þ
K Þ

cn
K 0c

n
0;K 0 8K 2Th; ð29Þ
where
an
K ¼ 1� Dt

jKj
X
e2EþK

juejjejaK;e

0@ 1A;
bn

K 0 ¼
Dt
jKj

X
e2E�K

juejjejaK 0;e �
X
e2EþK

juejjejaK 0 ;e

0@ 1A;
cn

K 0 ¼
Dt
jKj

X
e2E�K

juejjejaK 0 ;e.
Let us now show that an
K , bn

K 0 and cn
K 0 are nonnegative and thatX X
an
K þ

K 02ðT�K\T
þ
K Þ

bn
K 0 þ

K 02ðT�K nT
þ
K Þ

cn
K 0 ¼ 1. ð30Þ
To prove this latter property, let us first set cn
0;J ¼ 1 for all elements J = K, K 0 at the right hand side of (29).

Then, (30) immediately follows using (26) and noting that
Dt
jKj

X
e2EK

rK;ejuejjej ¼
Dt
jKj

X
e2E�K

juejjej �
X
e2EþK

juejjej

24 35 ¼ 0.
Let us now check that the coefficients in (29) are nonnegative. This is immediate for cn
K 0 . For an

K , nonnegativity
can be proved by using the definition of sn

K 0 and the properties of the Raviart–Thomas projection u discussed in
Section 2.1. For bn

K 0 , nonnegativity is ensured by the fact that, for an approximation of the characteristic lines
based on the piecewise constant Raviart–Thomas projection u, one has aK 0 ;e0 P aK 0;e00 if e0 2 E�K ; e

00 2 EþK . Then,
for each K 0 2 ðT�

K \Tþ
K Þ, we have
X
e02E�K

jue0 jje0jaK 0;e0 �
X

e002EþK

ju00e jje00jaK 0 ;e00 P min
e02E�K

aK 0 ;e0

X
e2E�K

juejjej �
X
e2EþK

juejjej

24 35.
Using again the fact that u satisfies (3), we immediately get that also bn
K 0 P 0, which concludes the proof. h
4.3. Monotonicity of ch,1 and ch,2

In this section, we carry out the second step of the proof by deriving a monotonic higher order method
through the use of the well known Flux Corrected Transport (FCT) technique (see [49]). In order to apply
the FCT framework, we identify in (22) the quantities F 0

e and Ae ¼
PNk�1

j¼1 F j
e as low order diffusive flux and

antidiffusive flux, respectively. Thus, appropriate limiting coefficients Ce 2 [0, 1] can be introduced for the anti-
diffusive fluxes in such a way to obtain the monotonized higher order scheme
cnþ1
0;K ¼ cn

0;K �
X
e2EK

rK;e

jKj F 0
e �

X
e2EK

rK;e

jKj CeAe 8K 2Th. ð31Þ
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The computation of the coefficients Ce is done along the same lines as in [49], and the algorithm is summarized
here for sake of completeness.

For each K 2Th:

� compute the low order solution ecnþ1
0;K using (31) with Ae = 0;

� compute the maximum and minimum allowable mean values cmax
0;K and cmin

0;K from the upstream neighboring
elements;
� compute PþK and P�K as the sum of all antidiffusive fluxes into and away from K, respectively;
� compute
QþK ¼ cmax
0;K � ecnþ1

0;K

� �
jKj; Q�K ¼ ecnþ1

0;K � cmin
0;K

� �
jKj;
� set
RþK ¼
min 1;QþK=PþK

� �
if PþK > 0;

0 if PþK ¼ 0;

(
R�K ¼

min 1;Q�K=P�K
� �

if P�K > 0;

0 if P�K ¼ 0.

(

Finally, for each edge e 2 Eh, set
Ce ¼
min Rþ

K2
e
;R�K1

e

� �
if Ae P 0;

min R�K2
e
;Rþ

K1
e

� �
if Ae < 0.

8><>:
5. Numerical results

In this section, we demonstrate the accuracy and stability of the SLDG method on one and two-dimen-
sional benchmark test cases for passive tracer advection. Tests are performed for the plain, nonmonotonic
(NM) and the FCT monotonized (M) versions of the SLDG method. A possible approach, based on a Dis-
continuous Galerkin formulation, is also proposed to include in SLDG the discretization of a diffusive term.

For the one-dimensional case, advection of both continuous and discontinuous profiles is considered. In
order to compare the accuracy of the proposed SLDG scheme to that of well known reference schemes,
the same test problems as in [23] are considered. Results indicate that the NM version of SLDG method is
second and third order accurate when P1 and P2 elements are used, respectively. The M version of the scheme
retains its accuracy away from local extrema (as usual for monotonic schemes); moreover, the absolute error
values compare well with those reported in the reference.

For the two-dimensional case, we study solid body rotation and deformational flow tests for which analytic
solutions are available. The results obtained using the SLDG method are then compared with those provided
by its parent methods, e.g., the standard nonconservative semi-Lagrangian (SL) method and the Runge–Kutta
Discontinuous Galerkin (RKDG) method. For the SL and SLDG runs the backward trajectories are approx-
imated by using the backward Euler method with substepping (see e.g. [20,41]). These comparisons highlight
several attractive properties of the SLDG formulation, which appears to merge effectively the SL and DG
methods without any loss in accuracy. The FCT based monotonization approach described in Section 4
appears to be superior to the slope limiting approach proposed in [8] and does not exhibit the excessive sharp-
ening of smooth profiles reported e.g. in [42] for more traditional applications of FCT. In particular, the
idea of retaining higher order degrees of freedom in the computation of the monotonized flux for the piecewise
constant component of ch seems to be highly beneficial to the overall quality of the computed approximate
solution, at least in the case of P1 elements.

In all the tests, the error norms kc� chkL2ðXÞ=kckL2ðXÞ and kc� chkL1ðXÞ=kckL1ðXÞ are computed, where c

denotes the exact solution. We also compute the conservation error �X(c � ch)dx and the two following error
measures (see [3,47]):



Table
Compu
regular

Nel

10
20
40
80
160
320

p
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Dissipation error ¼ rðcÞ � rðchÞ½ �2 þ �c� �chð Þ2;

Dispersion error ¼ 2 rðcÞrðchÞ �
1

jXj

Z
X
ðc� �cÞðch � �chÞdx

� �
;

where, for a function /, we set
�/ ¼ 1

jXj

Z
X

/dx; rð/Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jXj

Z
X
ð/� �/Þ2 dx

s
.

5.1. One-dimensional advection

In this section, we consider problem (15) with u = 1 on the space–time domain [�1, 1] · [0, 2]. In applying
SLDG method to this problem, backward trajectories and flux integrals are evaluated exactly. For ease of com-
parison with the results reported in [23], the L1 and L1 absolute error norms are computed in this case, as well
as the maximum and minimum values of the approximate solution. For the first test we set c0ðxÞ ¼ sinðpxÞ and
consider P1 and P2 elements on several computational grids with an increasing number of elements Nel and a
constant Courant number C = 0.8. Table 1 shows the computed error norms for both the NM and M versions
of SLDG with P1 elements. It can be checked that, in absence of monotonization, the proposed scheme is
second order accurate in both L1 and L1 norms, while introducing the monotonization the full second order
accuracy can only be retained in the L1 norm. As for the absolute values of the error, we observe that, with
respect to the results reported in [23], the limited SLDG method lies in between the reference TVD scheme
and the essentially nonoscillatory ‘‘UNO2’’ scheme. The monotonic computed solution and the exact solution
in the case Nel = 20 are shown in Fig. 2, where it can be seen that local extrema are mostly responsible for the
loss of second order accuracy. Table 2 shows the computed error norms for both the NM and M versions of
SLDG with P2 elements. In absence of monotonization, the novel scheme appears to be third order accurate,
while the introduction of the FCT monotonization reduces the convergence rate. This reduction of the conver-
gence rate is due to errors localized at local extrema, as can be checked from the third and sixth columns of
Table 2, where the two intervals [�0.6, �0.4] and [0.4, 0.6] are not considered in the error evaluation.

As second and third test cases, we consider discontinuous initial data, namely a square wave profile and the
following irregular profile:
c0ðxÞ ¼
�x sinð3px2=2Þ in ½�1;�1=3Þ;
j sinð2pxÞj in ½�1=3; 1=3�;
2x� 1� 1

6
sinð3pxÞ in ð1=3; 1�.

8><>:

Monotonic solutions computed on grids with 20 and 40 elements and with C = 0.8 are shown in Fig. 3, while
the corresponding errors are summarized in Table 3. It can be seen that the piecewise constant component ch,0

of the monotonic solution is bounded by the extreme values of the initial datum (while the complete solution is
not). The results compare well with those reported in [23] for the ‘‘UNO2’’ scheme.
1
ted L1 and L1 error norms and estimated convergence rate p for both the NM and M versions of SLDG, with P1 elements and
initial datum

L1 error L1 error

NM M NM M

5.28e�02 1.10e�01 4.74e�02 6.23e�02
1.31e�02 4.13e�02 1.16e�02 1.73e�02
3.25e�03 1.34e�02 2.84e�03 4.12e�03
8.06e�04 3.75e�03 7.02e�04 9.63e�04
2.01e�04 1.10e�03 1.75e�04 2.25e�04
5.01e�05 3.10e�04 4.35e�05 5.36e�05

2.01 1.69 2.02 2.04
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Fig. 2. One-dimensional advection test case with sinusoidal profile, C = 0.8 and Nel = 20. Solid line: piecewise linear SLDG solution;
circles: monotonic mean values; dashed line: analytic solution.

Table 2
Computed L1 and L1 error norms and estimated convergence rate p for both the NM and M versions of SLDG, with P2 elements and
regular initial datum

Nel L1 error L1 error

NM M M* NM M M*

10 3.35e�03 9.06e�02 5.98e�02 9.95e�04 5.80e�02 3.16e�02
20 4.07e�04 4.17e�02 2.76e�02 1.13e�04 1.51e�02 7.17e�03
40 5.13e�05 1.16e�02 4.08e�03 1.39e�05 2.93e�03 2.39e�04
80 6.43e�06 3.28e�03 1.09e�04 1.73e�06 4.96e�04 4.71e�06
160 8.05e�07 1.13e�03 1.21e�06 2.17e�07 9.06e�05 2.14e�07
320 1.01e�07 5.68e�04 1.01e�07 2.71e�08 2.34e�05 2.57e�08

p 2.99 0.99 3.58 3.00 1.95 3.06

Columns indicated by M* refer to the monotonic SLDG scheme where the error is evaluated away from local extrema.
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Fig. 3. Left: square wave one-dimensional advection test case with C = 0.8 and Nel = 20: monotonic SLDG solution (solid line, mean
values represented by circles), and analytic solution (dashed line). Right: irregular profile one-dimensional advection test case with C = 0.8
and Nel = 40: monotonic SLDG solution (solid line, mean values represented by circles), and analytic solution (dashed line).
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Table 3
Error norms for the one-dimensional tests with discontinuous initial data

Square wave Irregular profile

L1 error 6.98e�01 9.42e�01
L1 error 1.29e�01 2.16e�01
max(ch) 1 + 3.77e�02 1 � 4.74e�02
min(ch) �3.77e�02 �1 + 4.69e�01
max(ch,0) 1 � 4.20e�05 1 � 8.42e�02
min(ch,0) 4.20e�05 �1 + 5.28e�01
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5.2. Two-dimensional advection: solid body rotation

For the solid body rotation test, a stationary velocity field is considered, representing a rotating flow with
frequency x = 2p/1000 s�1 = 6.2832 · 10�3 s�1 around the point (1, 1) on the spatial domain X = (0, 2)2. The
initial datum is either a compactly supported C3 function with the shape of a cosine hill or a piecewise con-
stant, discontinuous function with the same support, while errors are evaluated at T = 4000 s, corresponding
to 4 full rotations.

In order to test the accuracy of the proposed SLDG method, we consider the standard test case of solid
body rotation with smooth initial datum. Four unstructured computational grids of varying amplitude h

are used, keeping the Courant number constant and equal to C = 0.25. Numerical quadratures are performed
by setting Le = 2, Lf = 3 and M = 2 in (13). The characteristics of the computational grids are summarized in
Table 4 while the numerical results are shown in Table 5 for the nonmonotonic SLDG scheme.

The experimental average convergence rates derived from Table 5 are 2.00, 2.03 in the L2, L1 norms,
respectively. Analogous results have been obtained in the L1 norm. These results appear to be compatible with
the supraconvergence estimates presented in [36].

It is interesting to compare the results summarized in Table 5 with the analogous ones obtained using the
SL and RKDG formulations under the same working conditions (C = 0.25). Table 6 refers to the solution
computed by the SL method on three computational grids with P2 reconstruction, h = {0.1, 0.05, 0.025}
and number of degrees of freedom Ndofs = {2825, 11,077, 44,665}. Table 7 refers to the solution computed
by the RKDG method without slope limiting on two computational grids with P1 finite elements,
h = {0.1, 0.05} and Ndofs = {4116, 16374}.
Table 4
Computational grids for the convergence test

h Nel dofs Dt

h = 0.1 1372 4116 1.25
h = 0.05 5458 16374 0.625
h = 0.033 12222 36666 0.416
h = 0.025 22172 66516 0.312

Table 5
Convergence test for the NM version of SLDG, smooth profile, C = 0.25

Rel. L2 error Rel. L1 error Dissipation error Dispersion error Conservation error

h = 0.1 3.53e�01 4.07e�01 1.96e�02 7.77e�02 �2.54e�16
h = 0.05 1.24e�01 1.49e�01 1.51e�03 1.11e�02 �3.92e�16
h = 0.033 5.58e�02 6.82e�02 1.96e�04 2.39e�03 1.81e�15
h = 0.025 2.73e�02 3.18e�02 3.36e�05 5.87e�04 2.63e�15

min(ch) max(ch) min(ch,0) max(ch,0)

h = 0.1 �4.51e�01 10 � 3.61e+00 �4.26e�01 10 � 4.08e+00
h = 0.05 �2.73e�01 10 � 1.05e+00 �2.50e�01 10 � 1.42e+00
h = 0.033 �1.21e�01 10 � 4.18e�01 �1.11e�01 10 � 5.72e�01
h = 0.025 �5.37e�02 10 � 1.34e�01 �5.04e�02 10 � 2.55e�01



Table 6
Convergence test for SL, smooth profile, C = 0.25

Rel. L2 error Rel. L1 error Dissipation error Dispersion error Min

h = 0.1 7.42e�01 7.13e�01 1.02e�01 1.74e+00 �7.00e�01
h = 0.05 5.18e�01 4.86e�01 1.77e�02 8.80e�01 �1.08e+00
h = 0.025 2.29e�01 2.14e�01 1.16e�03 1.75e�01 �6.87e�01

Table 7
Convergence test for RKDG without slope limiting, smooth profile, C = 0.25

Rel. L2 error Rel. L1 error Dissipation error Dispersion error Min

h = 0.1 3.47e�01 3.99e�01 2.48e�02 6.91e�02 �2.74e�01
h = 0.05 1.15e�01 1.41e�01 2.22e�03 8.55e�03 �1.56e�01
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These results show that at low Courant number the SLDG method does not suffer from the error ampli-
fication that is typical of SL methods (see e.g. the analysis in [14]), while its accuracy is comparable to that
of the RKDG method.

It is now important to evaluate the effects of the limiting procedure on the computed solution. With this
aim, we compare the performance of the M version of SLDG method and RKDG method. For the latter,
the slope limiting monotonization described in [8] was employed. Results are summarized in Table 8 for
the smooth advected profile and in Table 9 for the discontinuous advected profile, respectively. Both cases
were computed at resolution h = 0.1. It can be noticed that the SLDG method with FCT monotonization
is far less diffusive than the slope limiting procedure used in the RKDG formulation. This can be seen also
in the plots of the solutions displayed in Fig. 4. It can also be observed that the SLDG solution does not
display the excessive sharpening of smooth profiles reported e.g. in [42] in the case of more traditional appli-
cations of the FCT technique.

The performance of the SLDG formulation at C = 3 is also analyzed. In this case, numerical quadratures
are performed by setting Le = 8, Lf = 6 and M = 10 in (13). Results are summarized in Table 10 for the
smooth advected profile without monotonization, computed at resolution h = 0.05. The SLDG results are
compared to those of a standard SL method with continuous P2 reconstruction. As is well known, the SL solu-
tion is quite sensitive to the trajectory approximation technique. Thus, we report results in two extreme cases
of simple Euler approximation with substepping, indicated as SL(a), and of semi-Lagrangian advection com-
puted using the analytical trajectory, indicated as SL(b). In contrast, for the SLDG method only the simple
Table 8
Comparison of SLDG and RKDG with monotonization, smooth profile, C = 0.25

Rel. L2 error Rel. L1 error Dissipation error Dispersion error Conservation error

SLDG 4.27e�01 5.51e�01 6.25e�02 7.98e�02 �1.04e�15
RKDG 8.05e�01 8.74e�01 3.17e�01 1.89e�01 4.44e�16

min(ch) max(ch) min(ch,0) max(ch,0)

SLDG �1.31e�01 10 � 5.39e+00 �2.83e�19 10 � 5.73e+00
RKDG �1.29e�02 10 � 8.64e+00 2.51e�12 10 � 9.05e+00

Table 9
Comparison of SLDG and RKDG with monotonization, discontinuous profile, C = 0.25

Rel. L2 error Rel. L1 error Dissipation error Dispersion error Conservation error

SLDG 4.48e�01 6.03e�01 2.18e�01 2.61e�01 �4.74e�16
RKDG 8.04e�01 8.27e�01 9.73e�01 5.75e�01 �1.11e�15

min(ch) max(ch) min(ch,0) max(ch,0)

SLDG �1.35e�01 10 � 2.50e+00 �7.33e�19 10 � 3.09e+00
RKDG �2.13e�02 10 � 7.62e+00 5.75e�12 10 � 8.34e+00



Fig. 4. Monotonized solutions in the solid body rotation test case at C = 0.25, smooth profile (left) and discontinuous profile (right). First
row: SLDG solution computed with P1 elements; second row: RKDG solution computed with P1 elements; third row: analytic solution.

Table 10
Comparison of SLDG with P1 reconstruction and SL with continuous P2 reconstruction, smooth profile, C = 3

Rel. L2 error Rel. L1 error Dissipation error Dispersion error Conservation error

SLDG 7.31e�02 7.20e�02 2.55e�04 4.13e�03 �1.31e�15
SL(a) 2.45e�01 2.44e�01 6.61e�03 4.37e�02 6.93e�02
SL(b) 7.75e�02 7.40e�02 5.51e�04 4.47e�03 �4.20e�03

min(ch) max(ch) min(ch,0) max(ch,0)

SLDG �7.68e�02 10 � 5.33e�01 �4.85e�02 10 � 6.70e�01
SL(a) �2.49e�01 10 � 8.80e�01 �2.36e�01 10 � 9.74e�01
SL(b) �2.37e�01 10 � 7.59e�01 �2.34e�01 10 � 8.12e�01
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Euler approximation is used. It can be seen that the SLDG results are much less sensitive to the trajectory
approximation method and that the SLDG errors are comparable to those of SL(b), while they are superior
to SL(a). This greater accuracy of SLDG, however, corresponds to a higher computational cost, due to the
fact that the numerical solution does not only involve reconstruction at the foot of the characteristic lines,
but along these as well.
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5.3. Two-dimensional advection: deformational flow tests

Two deformational flow tests are considered. The first one is the nondivergent vortical velocity field intro-
duced in [11], and used by many authors to assess the accuracy of advection schemes, see e.g. [37,38]. The sec-
ond one is the well-known test proposed by Smolarkiewicz [43].

For the Doswell test problem, a circular domain of radius R = 3 is considered, with a triangulation Th con-
sisting of 2352 elements with Ndofs = 7056. In this case, numerical quadratures are performed by setting
Le = 12, Lf = 6 and M = 18 in (13). The initial datum is a function taking two different constant values on
the upper and lower half of the computational domain, respectively, with a sharp transition zone in the
middle, and the final time level is T = 20. The zero order degrees of freedom representing cell averages are
displayed in Fig. 5, as computed by the monotonized SLDG and RKDG schemes, at C = 2 and at
C = 0.3, respectively. It can be observed that the monotonization approach proposed for SLDG leads to a
much sharper interface and to much greater detail in the vortex roll-up zone, which is consistent with the error
statistics shown in Table 11. Together with the results in the previous section, these test cases lead to the con-
clusion that the FCT monotonized SLDG method is superior to the standard RKDG method. Furthermore,
beyond its application in conjunction to SLDG, the proposed FCT based monotonization technique might
also be a useful improvement of monotonization techniques in the framework of generic DG approximations.

For the Smolarkiewicz test problem, we use the SLDG scheme in its NM version on a structured triangu-
lation which fits the boundaries of the convective cells of the flow, as done in the cited reference. Moreover, the
orientation of the mesh triangles is chosen in such a way to preserve the symmetry of the problem with respect
to the axis x = 50. The number of elements is Nel = 3200, corresponding to Ndofs = 9600, and the time step is
chosen in order to have C = 4 approximately. In this case, numerical quadratures are performed by setting
Le = 10, Lf = 6 and M = 24 in (13).

As pointed out in [46], where an analytic solution for this test has been described, there are two flow regimes
for which different evaluation criteria are appropriate. On a time scale of the order of the characteristic period
of the flow, accurate numerical methods are assumed to reproduce the analytic solution correctly. On the other
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Fig. 5. Doswell deformation flow test case: monotone SLDG solution computed with P1 elements at C = 2 (left) and limited RKDG
reference solution computed with P1 elements at C = 0.3 (right).

Table 11
Errors for the SLDG solution (C = 2) and RKDG solution (C = 0.3) in the Doswell deformation flow test case

Rel. L2 error Rel. L1 error Dissipation error Dispersion error Conservation error

SLDG 2.26e�01 1.49e+00 1.02e�03 4.30e�02 �2.75e�15
RKDG 3.61e�01 1.59e+00 1.06e�02 1.01e�01 1.30e�15

min(ch) max(ch) min(ch,0) max(ch,0)

SLDG �1 � 4.76e�01 1 + 5.41e�01 �1 � 1.33e�10 1 + 1.00e�13
RKDG �1 � 7.09e�02 1 + 9.74e�02 �1 � 2.22e�16 1 + 2.22e�16
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hand, on a much longer time scale, it can only be expected that the average behaviour of the analytic solution
is recovered. Fig. 6(left) illustrates the computed solution at time level t = 37 s, corresponding to 3/4 of the
characteristic period of the flow, thus in the first regime. Fig. 6(right) shows the computed solution at time
level t = 2500 s, corresponding to 50 times the characteristic period of the flow, thus in the second regime.
The results in the first regime compare well with the plots of the analytic solution presented in [46]. On this
time scale, results obtained with the monotonic version of the SLDG method are qualitatively very similar
to those shown in Fig. 6. On the longer time scale, the results of the nonmonotonic SLDG scheme are qual-
itatively similar to large scale average of the analytic solution. The monotonic SLDG scheme yields results
(not displayed here) analogous to those of the FCT monotonized scheme discussed in [43].

5.4. Tests on the advection–diffusion equation

In this section, we address the issue of including a discretization of the diffusion term into the SLDG con-
text. Given the structure outlined in the previous sections, the Discontinuous Galerkin methods developed for
elliptic problems in [1] appear to be a natural choice. They use the same discontinuous piecewise polynomial
representation of the unknown concentration considered for the SLDG method, they guarantee mass conser-
vation at the element level and can reach high order accuracy. In a preliminary implementation, we choose the
Interior Penalty (IP) formulation discussed in [1] for the stationary case and applied in [27] to time dependent
problems. A simple forward Euler method is considered for the time stepping. This choice results in stability
and accuracy restrictions for the overall scheme, whose maximum available time step is dictated by the diffu-
sion process. Other time stepping techniques for the diffusion term could also be considered. Furthermore, it is
to be remarked that, for simplicity, diffusive terms are included here by means of an operator splitting
approach. We do not consider this an optimal solution and more appropriate ways to deal with the diffusion
term in SLDG are currently being investigated. On the other hand, operator splitting is often used to include
Fig. 6. Smolarkiewicz deformation flow test case. SLDG solution computed with P1 elements at Courant number 4. Left: time level
t = 37 s, first flow regime; right: time level t = 2500 s, second flow regime. Upper row: three-dimensional plots of the computed solution.
Lower row: sections of the computed solution along the middle line of the computational domain.
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diffusion in many existing models, so that the present results are an indication of what can be expected if the
SLDG formulation is applied within one of these models.

Two numerical experiments are carried out to validate the proposed formulation for advection dominated
flow regimes. In both cases, a constant viscosity m is considered. The first test considers one-dimensional con-
stant velocity advection of an initial Gaussian profile with zero mean and standard deviation r0 = 1 in pres-
ence of diffusion. The flow field, the diffusion coefficient and the final time level are chosen in such a way that
the final profile has mean and standard deviation equal to 53r0 and 3r0, respectively. The Péclet number is
UL/2m = 343, where U denotes the magnitude of the advective velocity and L denotes a typical length scale.
The Courant number is C = 1.5, while mDt/h2 = 0.16. The stabilization parameter for the IP scheme is set to 1
and P1 elements are considered. Results for the M version of SLDG advection are shown in Fig. 7. For the
two-dimensional case, the solid body rotation of an initial Gaussian profile is considered with mean (0.5, 1)
and standard deviation r0 = 0.0427, under the same setting as in Section 5.2. The grid size is such that the
Courant number is approximately equal to C = 3. Five rotations are performed and the diffusion coefficient
is chosen in such a way that the Péclet number is UL/2m = 3900 approximately while mDt/A = 0.02 approxi-
mately, where A denotes the average element area. The solution at final time has standard deviation equal
to r0 = 0.077. The results for the M version of SLDG advection are shown in Fig. 8. The error norms for both
cases are displayed in Table 12. We can observe that the errors obtained are approximately of the same mag-
nitude as in purely advective tests carried out at analogous space–time resolutions (see e.g. Table 10). Mass is
conserved up to machine precision and no significant difference is observed when considering the NM version
of the scheme. Furthermore, in the two-dimensional test the error in the standard deviation of the computed
solution can be estimated at approximately 10% of the exact value. Thus, even considering the limitations of
the approach used to introduce diffusion, the resulting method for the advection–diffusion equation appears to
be sufficiently accurate for many practical applications.
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Fig. 7. One-dimensional advection–diffusion test cases. Left: initial datum. Right: computed P1 solution (solid line, mean values
represented by circles) and exact solution (dashed line).

Fig. 8. Two-dimensional advection–diffusion test cases. Left: exact solution. Right: computed P1 solution.



Table 12
Advection diffusion tests: results obtained with SLDG in one- and two-dimensional cases

Rel. L2 error Rel. L1 error Dissipation error Dispersion error

1D test 1.68e�02 2.43e�02 2.52e�08 1.44e�07
2D test 7.98e�02 1.44e�01 8.68e�05 1.89e�04
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6. Open issues and further developments

One major open issue with respect to the SLDG method appears to be the characterization of the accuracy
required in the space–time quadrature formulae introduced in Section 2.4. A precise evaluation of the effi-
ciency of the SLDG method compared to other more mature methods can be feasible only once the above
issue is properly addressed. The accuracy required in the quadrature formulae for the approximate computa-
tion of the fluxes and volume integrals in equation (5) appears to be related to the local Courant number. Pre-
cisely, for low Courant numbers, a smaller number of quadrature points appears to be sufficient to achieve the
same level of accuracy, compared to the numbers necessary for higher Courant number cases. One possibility
to improve computational efficiency could be to choose the number of quadrature points locally in space and
time as a function of the Courant number.

7. Conclusions

In this article, the SLDG discretization approach for the scalar advection equation has been introduced,
combining the accuracy and flexibility of the DG method with the computational efficiency and robustness
of semi-Lagrangian techniques. Unconditional stability of the proposed discretization has been proved in
the von Neumann sense for the one-dimensional case. A monotonization technique has been introduced,
based on the Flux Corrected Transport approach, which yields a multi-dimensional monotonic scheme for
the piecewise constant component of the computed solution, reducing at the same time the numerical diffusion
of monotonization approaches more common in the Discontinuous Galerkin framework. The accuracy and
stability of the method have been demonstrated by several one-dimensional and two-dimensional tracer advec-
tion tests. In particular, the comparison with results obtained by standard semi-Lagrangian and Discontinu-
ous Galerkin methods has shown that SLDG merges effectively the most desirable properties of both
approaches, avoiding at the same time their most remarkable shortcomings. More thorough theoretical anal-
ysis and further testing of the proposed approach are currently being undertaken, as well as the extension of
the novel scheme to tracer transport in divergent flows and to the solution of nonlinear systems of conserva-
tion laws.
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